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Fitting transmission functions with exponential sums is the basis for a widely used 
approximation for calculating spectrally integrated radiative fluxes in planetary atmos- 
pheres, especially when both line absorption and scattering are important. The error in 
this method depends crucially on the accuracy of the fits, but unfortunately exponential- 
sum fitting is a classical ill-conditioned problem of numerical analysis. Previous techniques 
devised for exponential-sum fitting are often unsatisfactory in this application. We present 
a new method which sidesteps the ill conditioning, guarantees convergence to the unique 
best least-squares fit, gives positive coefficients, and produces fits orders of magnitude more 
accurate than any which have so far been published. The method is demonstrated to be 
capable of recovering an exponential sum, given data sampled from that sum and rounded 
to as few as two decimal places. Sample fits are given for the Goody and Malkmus random 
band models and the Yamamoto Ha0 solar absorption data in order to illustrate the 
high accuracy of the method. The effect on the fits of errors in the transmission data is 
examined in some depth. 

1. INTRODUCTION 

In the past decade there have been tremendous advances in our computaGona1 tools 
for solving monochromatic radiative transfer problems in plane-parallel horizontally- 
homogeneous atmospheres with vertically inhomogeneous distributions of molecular 
absorbers, clouds, and aerosols. But in order to account for absorption line structure 
hundreds of thousands of such monochromatic solutions would have to be summed 
to obtain spectrally integrated solar and infrared fluxes. Even were a vast computing 
resource available for such a line-by-line calculation, the enterprise would be of 
dubious value owing to our ignorance of exact line strengths and line shapes. Therefore 
approximate methods of integrating the radiative flux across a spectral region con- 
taining many absorption lines must be sought. 

One method for bypassing the line-by-line integration, the exponential-sum fitting 
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EXPONENTIAL-SUM FIlTlNG 417 

of transmissions (ESFT) method, has been widely exploited since Hunt and Grant [l] 
applied it to an infrared absorbing-scattering problem involving cirrus cloud. The 
basis of the ESFT method is that the transmission function T(u) for a given spectral 
interval is fit by a sum of exponentials E(u), viz. 

T(u) g E(u) = f a,e-k”u. 
i=l 

(1) 

Then the fluxes from M monochromatic probems with absorption coefficients corre- 
sponding to ki are summed up with weights ai to give the spectrally integrated flux. 
Because of the physical interpretations placed on a, and ki , we must require ai > 0 
and kc > 0. Subsequently the ESFT method was applied to clear atmospheres by 
Wiscombe and Freeman [2], Arking and Grossman [3], Lacis and Hansen [4], and 
Raschke et al. [5]; to aerosol-laden atmospheres by Sargent [6], Sargent and Beckman 
[7], Liou and Sasamori [8], and Pollack et al. [9]; and to cloudy atmospheres by 
Yamamoto et al. [lo], Wiscombe [ll], Lacis and Hansen [4], and Raschke et al. [5]. 
Only Wiscombe and Freeman [2], Wiscombe [ll], and Pollack et al. [9] applied the 
method across the complete solar and infrared spectrums; the other applications were 
for either the solar or infrared separately. 

While Hunt and Grant were the first to apply the ESFT method to a complex line 
absorption-scattering problem, the basic idea behind the method considerably 
antedates their work. It can be traced back at least to Chandrasekhar [12], who 
considered a two-absorption-coefficient (two-term exponential fit) model as the next 
step beyond the gray-gas assumption for a stellar atmosphere. Hottel used the idea 
in the 1930s to study radiant heat transfer in furnaces [13]. It was used in neutron 
transport theory under the name “picket fence model” [14], presumably because the 
histogram for the absorption coefficient distribution resembles a picket fence. Sargent 
[6] reviews the use of the idea under the name “sum-of-gray-gases approximation” in 
heat transfer theory. Kondrat’yev [15] also reviews some atmospheric applications of 
the ESFT idea dating back as far as 1939; some of these were simply in the nature of 
preband-model fits to transmission, while others were genuine computations of clear- 
sky infrared fluxes in the spirit of the ESFT method. It should be emphasized, however, 
that none of these earlier applications treated scattering in any sort of credible way, 
if at all. The really powerful techniques needed to handle multiple scattering (including 
reliable Mie scattering calculations) have only become available in the last 10 to 15 
years. 

Unfortunately for the applications (not only in radiative transfer but also in fields 
as diverse as biology, electrical engineering, and nuclear physics) the exponential-sum 
fitting problem is a classically ill-conditioned one [16]. It is customary to blame this 
ill conditioning on the nonorthogonality of the set of exponential functions, however 
our analysis below will illuminate the nature of this ill conditioning more precisely. 
A number of often unsatisfactory approaches have been made to exponential-sum 
fitting. These approaches fall into five broad categories, which are in order of increasing 
difficulty (and increasing computation time): (1) successive subtraction; (2) selecting 
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the ki a priori; (3) Prony’s method and variants; (4) inverse Laplace transforms; and 
(5) nonlinear least-squares techniques. We briefly discuss each of these in turn. 

Successive subtraction is also known as the “graphical” technique because, when 
T(U) is plotted on semilogarithmic graph paper, its asymptotic behavior for large u is 
often linear. This asymptotic line represents the component ule-klu with the smallest 
exponent k, . If we then plot T(U) - a,e- kl” and repeat this process, we can “peel off” 
successive terms in the exponential sum, one by one. In practice, this method, whether 
implemented graphically or on a computer, tends to break down after two or three 
terms are recovered and generally is incapable of fitting to better than about 1%. 
The computer implementation of successive subtraction often produces negative 
coefficients a, and/or negative exponents ki when applied to transmission functions. 
Avrett and Hummer [17] devised a variant, giving at best 1 % error, which seems to 
prevent these difficulties but which (a) gives a number of terms equal to the number of 
data points being fitted, and (b) requires the derivative of the function being fitted. 
The latter requirement precludes the direct use of measured transmission data, 
for which the derivative can seldom be estimated with any accuracy; however, band 
models can still be used. Liou and Sasamori [8] used Avrett and Hummer’s algorithm 
with band models for their solar-spectrum aerosol study. 

C. D. Rodgers (private communication) obtained the four-term and ten-term 
exponential-sum fits used by Hunt and Grant [I] by preselecting the ki , based on 
knowledge of the range of line strengths, then obtaining the ai from a standard linear 
least-squares fit. By fixing both the ki and the number of terms, this approach loses 
the flexibility of the other methods, but in return it gains a certain freedom from the 
difficulties which plague them. However, the only way to increase the accuracy of 
this method is to increase the number of terms, and thus to achieve a given level of 
accuracy it may force many more monochromatic problems to be solved than would 
be required by an optimal fit. 

Prony’s method [ 16, p. 272; 18, p. 3781 was put forward in 1795 and has been rather 
thoroughly analyzed since. Hudson’s [19] method is essentially a variant. Prony’s 
method first finds the ki as roots of a polynomial, then the ai from a linear least- 
squares solution. Large variations are produced in the ai and ki by small variations 
in the function being fitted, although this feature is found in all the methods (including 
ours) and is an intrinsic property of the problem rather than of Prony’s method. 
Defects peculiar to Prony’s method are that it often produces negative or complex ki , 
negative ai , and C a, # 1. It requires preselection of the number M of terms, and 
for M > 3 the aforementioned difficulties almost invariably occur. Prony’s method 
fits data sampled from T(U) at equally spaced values of U, and so the portion of the 
T(U) curve for small absorber amounts, where T(U) plummets rapidly, is undersampled. 
Lanczos points out that even separating three exponential components with Prony’s 
method often presents insurmountable difficulties, and that the method can fail even 
when the number of terms is known and good initial approximations for the ki are 
available. Raschke and Stucke [20] adapted Prony’s method to ESFT by introducing 
several empirical steps to force ai > 0, ki > 0, and C a, = 1. They obtained fits of 
from two to six terms, with accuracy on the order of I%, to a wide variety of H20, 
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COz , and O9 transmission functions. Osborne [21] has also generalized Prony’s 
method and overcome some of its numerical difficulties, but still cannot guarantee 
real ki (much less ki > 0). 

The inverse Laplace transform or “k-distribution” technique relies on the obser- 
vation that if we can determine the inverse Laplace transform of T(U), 

f(k) = g-%‘W 

then the inverse relationship 

T(u) = LZ’[f(k)] = Cm f(k) cku dk 
JO 

yields an exponential fit for T(U) when the integral is approximated by a finite sum 
(a quadrature formula). This method is superficially attractive for several reasons: 
it guarantees ki 2 0, and if f(k) 3 0 as one would expect on physical grounds, 
ai > 0 as well. Furthermore the accuracy of the fit may be adjusted by taking more or 
less terms in the quadrature formula. But these nice features are predicated on the 
accurate computation off(k). The operation 9-l is ill conditioned numerically [22], 
and so, if T(U) is known only in the form of data, f(k) is recoverable at best with only 
poor accuracy. If T(U) is given analytically, on the other hand, f(k) may be deter- 
minable in closed form, thus bypassing the ill conditioning. Arking and Grossman [3] 
found f(k) in closed form for several regular band models, including Elsasser’s; 
interestingly enough, they did this not by taking Z-‘[T(u)] but by regarding f(k) 
as the distribution function for the band model absorption coefficient. Domoto [23] 
has commented on this dual interpretation of f(k) and has furthermore given f(k) 
in closed form for the Malkmus band model (apparently a closed form does not exist 
for the Goody model). Even when f(k) is known in closed form, however, its behavior 
for large and small k often causes standard quadrature formulas to yield very poor 
exponential fits from Eq. (2) even if many terms are taken (this point is demonstrated 
in Section 3(d)). 

Another variant of the transform method rests on the observation that the inverse 
Laplace transform of a sum of exponentials is a sum of &functions. Thus applying 2-l 
to a function which is close to a sum of exponentials should yield peaks at each ki 
with height proportional to a, . Gardner et al. [24], Gardner [25], Brownell and 
Callahan [26], and Papoulis [27] have all developed variations on this idea. The 
difficulties here are very similar to the well-known ones in the Fourier analysis of time 
series: spurious peaks, loss of peaks in the background noise, merging of peaks when 
the corresponding ki are not well separated, etc. The peak-merging problem is espe- 
cially severe for transmission functions-the random model f(k)‘s shown by Arking 
and Grossman and by Domoto have only one or two broad peaks, while for regular 
models f(k) is U-shaped and therefore has no peaks at all. For a portion of the 
CO, 15~ band, Arking and Grossman show an f(k) with hardly any discernible 
peak structure whatsoever. Thus Gardner-type methods are hopelessly ill suited to 
ESFT. 
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By far the most popular methods for exponential-sum fitting are nonlinear least- 
squares (NLLS) techniques, which are often available as standard subroutines in 
computer libraries (e.g. [28]). The reason for this popularity is that NLLS methods 
are very general and very sophisticated, and they guarantee improvement in the fit 
(as measured by the least-squares residual R) at each step. All such methods search 
the ZM-dimensional surface 

R(a, ,..., a,,., , k, ,..., kM) = f w, T(u,) - f aieekiun 
I 

2 

n=0 i=l 

(where the w, are user-chosen weights) in order to find a minimum. It is beyond our 
scope to review the many applications of NLLS methods to exponential-sum fitting, 
but it is interesting to note that the fitting of even simple two- or three-term exponential 
sums is regarded as one of the severest tests of any new NLLS technique (see, for 
example, [29]). Box [30] gives an illustration of the R-surface for a very simple 
two-term exponential sum; it has a narrow, steep-sided, curved, and highly asymmetric 
valley. Since NLLS methods assume the R-surface becomes locally quadratic, in order 
to converge faster than the impossibly slow steepest descents method, it is not 
surprising that the decidedly nonquadratic R-surfaces associated with exponential 
sums confound them. NLLS techniques require a good initial guess for the ai and ki , 
which must be obtained from one of the flawed simpler methods above, or else 
convergence will be either nonexistent or to an unacceptably poor fit. Even with a good 
initial guess, it has been the authors’ experience that NLLS methods creep with 
agonizing slowness, often stopping and claiming convergence when they are still far 
from the correct minimum [cf. Section 3(b)]. NLLS methods must furthermore be 
modified in some way to constrain ai > 0, ki > 0, and C ai = 1 (for example by 
transformation of variables, cf. [30]). Sargent [6] and Sargent and Beckman [7] 
obtained two- and three-term NLLS fits with typical errors exceeding 1 %. Lacis and 
Hansen [4] and Pollack et al. [9] report NLLS fits with accuracy on the order of 
0.1 “/,. 

A natural question to ask, given the success of suitably modified NLLS methods 
in fitting transmission functions to measurement accuracy, is: Why pursue the 
subject further? There are several answers to this question. First let us note that, 
in fitting to 0.1 %, NLLS methods are generally working to their uttermost limit of 
accuracy; they will be blind to further improvements in measurement accuracy, 
which are sorely needed to reduce uncertainties in present calculations. Second, 
Raschke et al. [5] and Zdunkowski (private communication) have noted that 
insufficiently accurate fits produce spurious oscillations in vertical heating rate 
profiles computed by the ESFT method. This is because heating rates are related to 
the derivative of T(u), which is usually fitted at least an order of magnitude worse than 
T(u) itself. Even 0.1 % fits may produce serious errors in heating rate. Third, since 
the error in the ESFT method is partially dependent on the accuracy of the fits, one 
would like to have the best fit possible; knowing this best fit, one may then degrade 
its accuracy in steps to study the impact on computed fluxes and heating rates 
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Previous fitting techniques are hard pressed to find a fit at all, much less the best fit, 
and are ill suited to systematic accuracy-degradation studies. Finally, from a numerical 
analysis standpoint, none of the previous techniques really faces squarely the essential 
difficulties of exponential fitting; they all succeed only to the extent that a patchwork of 
ad hoc fixes is successful in staving off disaster. 

Below we present a fast numerical method for ESFT which we believe to be superior 
to all previous methods. It is based on some little-known work of Cantor and 
Evans [31] and avoids all the problems which plague the other methods, excepting 
only the requirement for equispaced data (which causes T(U) to be poorly fitted for 
very small U, as in Prony’s method). Our method 

(1) is well conditioned; 
(2) has guaranteed convergence to the best fit; 
(3) automatically selects some optimal number of terms (determined by data 

quality, roundoff error, and user-specified parameters); 
(4) constrains ai > 0, ki > 0, and C ai = 1, and 
(5) produces fits whose accuracy is regulated primarily by the accuracy of the 

data. 

Sample fits to the Goody and Malkmus band models and to Yamamoto’s H,O 
solar absorption data are given. The effect of rounded data on the fits is studied. 
Other valuable applications of the method, such as the recovery of radioactive decay 
rates and chemical rate constants, are also touched upon. 

2. THE EXPONENTIAL-SUM FITTING METHOD 

The fundamental theorems guaranteeing existence, uniqueness, and convergence 
for our method, without a detailed discussion of the ill conditioning or the numerical 
procedures required, are contained in a terse and formidably abstract paper by 
Cantor and Evans [31], herein-after referred to as C/E. The present paper completes 
the development of a numerical technique based upon the C/E theorems. The style 
of C/E has apparently been a barrier to its assimilation by physical scientists and 
even by numerical analysts, many of whom continue, with little success, to apply 
various nonlinear least-squares techniques to exponential fitting. (Our perusal of the 
standard citation indexes shows but one citation of C/E since its publication (by 
Raschke and Stucke [20], who however chose to modify Prony’s method).) Therefore 
it seemed essential to recapitulate those results of C/E which bear directly on the 
numerical procedure, omitting proofs and striving for understanding at the expense 
of rigor and generality. In what follows, we shall intersperse relevant C/E results 
with the presentation, referring to specific sections or theorems of C/E for proofs. 
(Note that we specialize the C/E norm to Euclidean and the C/E set S to the interval 
[0, 11, and we omit mathematical niceties which add nothing to the construction of 
the algorithm.) 
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(a) The problem. The problem is to find an exponential-sum fit E(u) to a function 
T(u), as in Eq. (l), with ai > 0 and ki > 0. Picking a set u, = n Au (n = O,..., N) 
of equally spaced arguments, we measure the “distance” between E(u) and T(u) by 
the least-squares residual 

where w, 3 0 are least-squares weights and E(u,) is, from Eq. (l), a sum of powers 

E(u,) = g aidin 
i=l 

(W 

where 

Clearly Bi E [0, l] when ki 2 0. 
The “best” fit we define as the one which minimizes R, over all allowable values of 

M, ai, and ki . 

(b) Existence and uniqueness. In brief, a best fit, as defined above, exists and is 
unique (C/E, Sections 1 and 2). Uniqueness may be lost if the data T(u,,) are exactly 
representable by a finite sum of exponentials, but this is very rare with finite-precision 
arithmetic. In the past there has been some confusion between stability and uniqueness 
in this problem. Certainly there is instability: if we vary the data T(u,) by small 
amounts, there may be large changes in the best fit. But for any particular set of data, 
the best fit is unique. 

It is useful to visualize the fitting process in an (N + l)-dimensional vector space, 
illustrated schematically in Fig. 1. The data vector [T(u,),..., T(z+)] is a point Tin that 
space and lies outside the convex subspace C, formed by all possible exponential-sum 

FIG. 1. Schematic illustration of exponential fitting. T is the data vector, CN is the subspace of all 
exponential sums with positive coefficients, and I? is the point on the boundary of CN which is closest 
to T. R, is the distance between E and T. 
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vectors [E(u,),..., E&)1. Any point E in C, which is closest to T (as measured by R,, , 
Eq. (3)) will obviously be on the boundary of C, . That there is only one such closest 
point follows from the fact that C, is convex, it “bulges outward” everywhere. 
Furthermore, points on the boundary of C, correspond to unique E(u)% (i.e., unique 
a, , ki , and M). Thus a closest point exists, is unique, and corresponds to a unique 
E(u), which is our best fit. 

(c) The residual polynomial. Presuming the Oi in Eq. (4) to be known, the standard 
linear least-squares “normal” equations for a, ,..., aM , are 

aR,/aac = P(8,) = 0 [i = l,..., M] (5) 

where 

P(e) = 2 $ p,0” 
VI=0 

(6) 

P,, = w&%4 - T&d. (7) 

The set of al which satisfy Eq. (5) clearly minimize R, for Exed Bi . We call P(6) the 
“residual polynomial” because its coefficients p,, are the (weighted) point-by-point 
differences between the fit and the data. 

The residual polynomial is fundamental to our entire method because of the 
following theorem (C/E, Theorem 2.1): A best fit to the data (with ai > 0 and ki > 0) 
has been obtained if and only if the residual polynomial satisfies 

(a) P(Q = 0 for i = l,..., M, 

(b) p(e) b 0 for e E [o, 11. 

These two conditions furnish a remarkably simple definition of a best fit (condition (a) 
is just Eqs. (5)). The essence of our method is that it iterates back and forth between 
solving condition (a) for the coefficients ai and improving toward condition (b) by 
adding a new exponential factor 8, . Complications arise because Eqs. (5) very quickly 
become ill conditioned, because their solution often yields some ai < 0, and because 
a straightforward calculation of the residual R, is ill conditioned, but we have managed 
to deal effectively with each of these problems. 

Note that conditions (a) and (b) taken together imply that each Bi is a root of P(0) 
of even multiplicity. In practice, the roots seem to be double since the numerical 
procedure tends to produce very close pairs of ei’s. These close pairs of 0;s are 
directly responsible for the ill conditioning we encounter in Eqs. (5) yet every attempt 
to coalesce these pairs during the iterative procedure and so eliminate the ill 
conditioning has caused the method to fail. It is apparently vital to the numerical 
procedure that the 0,‘s be allowed to remain close without actually coalescing. Only 
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after convergence has it been found profitable to coalesce any such remaining pairs 
(see Section 2(i)). 

(d) Overview of method. The logical flow of our method is illustrated schematically 
in Fig. 2; the parts labeled I through V are described in detail in Sections 2(e) through 
2(i). There is a main iteration back and forth between the nonlinear part of the problem 
(I, finding a new ei) and the linear part (II, finding a, ,..., a,+,). As a by-product of the 

1nitiamze: 

E-O 4 
(1) 

Solve linear least-squares problem 

for ai by divided-difference faccari- 

(11) zation and modified Gram-Schmidt l 

method; simultaneously obtain p, 

and k, 

All ai > O? 

(III) 

Drop term from fit 

corresponding to coeffi- 

Yes cient which first becomes 

negative when moving from 

Coalesce close old coefficients toward 

pairs of Bi W) new ones 

FIG, 2. Logical flow of exponential-sum fitting algorithm. Blocks labeled I-V are discussed in 
that drder in the text. 

linear part, we obtain the residual polynomial coefficients pn (Eq. (7)) and from them 
the residual R, . There is a minor iteration (III) to drop terms with negative af. 
If at any stage of the major iteration all Q~ are positive and the convergence criteria 
(IV) are satisfied, then close pairs of Bi are coalesced (V) and we are finished. The 
method is initialized by an identically-zero exponential sum, E(U) E 0; therefore 
we experience none of the initialization difficulties faced by NLLS methods. 
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(e) iVonlinearpart (I). Unless we have already achieved a best fit, P(0) must be 
negative over at least part of the interval [0, 11. Let 0 = 0, be the point at which P(B) 
is the most negative: 

0 > P(8,) = n&n] P(B). 

By adding 0, to the other &‘s and then enforcing P(8,) = 0 in the linear part, we have, 
intuitively speaking, effected the most improvement toward P(B) > 0 (condition (b) 
above). This procedure essentially “lifts up” the part of the residual polynomial which 
“droops” most below zero. 

The choice for a new 0 in Eq. (8) can be motivated more rigorously as follows. 
Suppose we have an approximant E(u) (Eq. (4)) and we want to add a new term a,@ 
in such a way that, as its coefficient a, increases from zero, the residual R, (Eq. (3)) 
decreases most rapidly. This is in the spirit of the steepest descents methods. The rate 
of change of R, with a,, at a, = 0 is 

a% 
I [ aao a,=O = ’ & go w,[&J + aOeon - WJ1” 1 aa=o 

= p(eo) 

and making this rate of change as negative as possible leads again to Eq. (8) as the 
condition for picking e, . 

The finding of the global minimum of P(8), as required by Eq. (8), is straightforward 
but potentially time consuming, especially since the degree of P(B) is equal to the 
number of data points N, and N may need to be large to properly resolve a trans- 
mission function. The examination of the roots of P’(B) is not viable because 
polynomial root-finding algorithms are notoriously ill conditioned when some of the 
coefficients have considerably different magnitudes than others; this will certainly be 
the case for P’(B), whose coefficients are proportional to the residuals. We first used 
a direct lOOO-point search of [O, 11, with a refined mesh around each of the old Bi 
in order to catch close pairs. This was perfectly satisfactory, but, since there are N 
multiplications in one evaluation of P(B), roughly 1OOONmultiplications were required 
for a single search. Already at N = 100 this imposes a considerable burden, for the 
direct search must be performed perhaps 50 to 100 times before the major iteration 
loop in Fig. 2 converges satisfactorily. 

In practice, we have found that most of the roots et of P(8) tend to cluster near 
8 = 1, corresponding to a roughly equal spacing of lnln Bi (or In kJ. This, coupled 
with the fact that the minimum of P(8) is often very near to one of its roots, makes 
direct-search minimization of P(8) difficult in principle as well as computationally 
time consuming. 

In order to circumvent the direct search, we devised a global minimization method 
with guaranteed convergence which employs quadratic bounds and interval elimi- 
nation. This method requires only a fraction of the number of P(d) evaluations as the 
direct search and at the same time yields a more accurate minimum. All the compu- 
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tations reported here used this improved method, which we are publishing separately. 
We emphasize, however, that such a sophisticated minimization procedure, while 
desirable from the viewpoint of computational speed, is in no way essential to the 
success of the fitting method. 

(f) Linear part (II). Lawson and Hanson [32, p. 1221, hereinafter abbreviated 
as L/H, emphasize that in practice one should never solve Eqs. (5) directly because 
the modern linear least-squares methods which they describe are much better behaved 
numerically. Once we have factored the ill conditioning out of Eqs. (5), they can be 
solved by a slight variant of one of these modem methods (the modified Gram- 
Schmidt). 

Basically, the overdetermined linear system which we wish to solve for the ai is 

E(u,) = f aiep g T(z&J (n = O,..., N). 
i=l 

In matrix form, this is 

Aa z b (94 
where 

A= , -(;i), b-(;;)). (9b) 

It is easily verified that if W = diag[wJ is a diagonal matrix of the weights, then 
Eqs. (5) result from multiplying both sides of Eq. (9) by ATW 

Da = d WW 

where 

D EZ A=WA, d = A=Wb. WV 

Since we do not in fact solve Eq. (lo), we shall introduce the weights by multiplying 
both sides of Eq. (9) by w1i2, but it is computationally more economical to postpone 
this operation until after the ill conditioning is factored out of matrix A. 

The ill conditioning of A arises when Bi -+ %j for any i and j, for then two columns 
of A become identical and A has less than full rank. Matrix D (Eq. (10)) becomes 
singular when %i + %j . Since close pairs of %:s are a fixture of our method, this 
ill conditioning is a serious and ever-present problem. To sidestep it, we postmultiply 
A by a matrix B carrying away all the ill conditioning and yielding a matrix A’ which 
always has full rank, 

A’ = AB (11) 
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B performs elementary column operations on A which resemble the Newton divided- 
difference technique. 

As a simple example, consider a case with N = 3. Subtract column 1 of A 
(Eq. (9b)) from columns 2 and 3 (postmultiply by matrix operator EJ, then divide 
column 2 by (0, - 0,) and column 3 by (0, - 19,) (postmultiply by matrix operator &). 
Now subtract column 2 from column 3 (matrix operator EJ and divide column 3 by 
(13, - 0,) (matrix operator D,), to yield 

i 

1 0 0 

A’ = AE,D,E,D, = 01 1 0 
42 4 + 0, 1 * 

e13 42 + 48, + 8,s 8, + e2 + 8, 1 

The last matrix has full rank even if 8, = 6, = 8, . 
Generalizing this example, the transformation matrix B must be 

M-l 

B = n E,D, 
k=l 

(12) 

where Ek subtracts column k from columns k + 1 through M and Dk divides columnj 
by (0, - 6,) forj = k + 1 to M. It is elementary to show that 

Ek = 

i 

1 

Dk = 

. 0 

1 -1 . . . 

0 * 

. . 
1 

cek+, 

0 

0 

ek)-i 

(134 

(k + 1)st row. 

W) 

The matrix A’ is complicated, as the example indicates, but it may be formed column- 
by-column with a simple recursion procedure. First set the diagonal elements of A’ 
(to unity) and its first column equal to the first column of A. Then 

A& = 6’jA;-l.j + A;-,,+, (i=j+ltoN+l;j=2tOM). (14) 
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Using the above conditioning transformation (Eqs. (11) to (13)), the problem 
becomes 

WWA’a E WfJb (15) 
where 

a = Ba’. (16) 

The numerical least-squares solution of Eq. (1.5) for a’ now presents no particular 
difficulties, and the reintroduction of the ill conditioning, through multiplication of a’ 
by B to get a (Eq. (16)), ’ IS d one explicitly and not by any numerical technique. Note 
that it is computationally most efficient to multiply a’ by the factored form (12) of B. 
The recursion for so doing is 

a,’ = aj’/(ej - 6,-i), j=M-i+ltoM 

1 

ahWi = ah+ - 5 ’ aj , 
j=M-i+1 I i=1toiV--1. 

Note that the vector a’ continually overwrites itself during this recursion, and at the 
conclusion contains the desired vector a. The only use which is made of a in our 
method (until convergence) is to decide which terms to drop on account of negative 
components in a. For this purpose, no great accuracy in a is necessary. The most 
important output from solving Eq. (15) is not a, but the coefficients p,, (Eq. (7)) of the 
residual polynomial and the residual R, (Eq. (3)). One needs to know the pn accurately 
in order that the nonlinear step be well behaved numerically, and one needs R, 
accurately in order to determine convergence. 

To compute the p,, directly from their definition, Eq. (7), is hopelessly inaccurate 
because, the better the fit, the more significant digits are lost in subtracting E(u,) 
from T(u,,); and furthermore E(u,) involves a, which is ill conditioned. But note that 
the vector of residuals may be written 

r E W12(Aa - b) = VJ2(A’a’ - b) (17) 

and if r is computed from the second expression, involving A’ and not A, its compo- 
nents r, will not be subject to ill conditioning as Br + ei . From these components 
we obtain 

R, = 2 m2. 
n=o 

(18) 

We have chosen the modified Gram-Schmidt (MGS) method [L/H, p. 1291 for 
solving Eqs. (15) because it yields the residual vector, Eq. (17), as an automatic by- 
product of the computation; the more popular Householder technique (L/H, Chap. 11) 
requires us to obtain it from Eq. (17) as an additional step. L/H do not derive the 
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result, but it is a fairly simple matter to show that the (A4 + 1)st column of their 
matrix & [L/H, Eqs. (19.32-33)] is -r. 

Two slight modifications of the MGS method conserve computation in our 
particular case. First, the matrix W112A’ has a zero upper triangular part, and these 
zeros will be preserved through the Gram-Schmidt orthogonalization process (i.e., 
will occur in the same locations of &) if we start at column M (the shortest one) 
and work backward. By explicitly noting these zeros in the formation of dot products 
of columns, computation is reduced. Second, as much information as possible should 
be saved in the MGS process (A’, dot products, etc.) because whenever an exponential 
factor Bi is dropped or added as described in Sections 2(e) and 2(g), all columns of A, 
and therefore of A’, to the left of the column dropped or added are unchanged. 

(g) Term-dropping Step (III). The linear step may, and often does, produce 
negative ai (although by construction the coefficient of the term added in the nonlinear 
step will always be positive). This is a signal that the corresponding terms are of 
dubious desirability. We shall eliminate the “least desirable” of these terms by an 
adaptation of the L/H algorithm NNLS (p. 158). Our adaptation sacrifices NNLS’s 
guaranteed satisfaction of the Kuhn-Tucker conditions, but gains in return a great 
increase in speed by initializing at the old ais (rather than zero) and by not allowing 
a term, once zeroed, to be unzeroed. 

In order to understand our term-dropping procedure, certain basic facts from 
quadratic programming theory [33] are necessary. The residual (Eq. (3)) can be written 
(C/E Lemma 3.1) 

R, = c,, - 2dTa + aTDa (19) 

with c,, a constant, and D, a, and d as in Eqs. (10). Since R, is a quadratic form, we 
may view the problem of finding a >, 0 for fixed Bi as a quadratic programming 
problem of a special sort, which is 

find min R,,(a) with a 2 0. (20) 

The matrix D is positive definite, therefore the M-dimensional surface consisting of 
points (a, R,(a)) is strictly convex, or “bowl-shaped,” and has a unique global 
minimum. By keeping the bowl shape of the R,-surface in mind, it will be easier to 
visualize how R, decreases even when we are dropping terms from the fit rather than 
adding them. In passing, we note that the ill conditioning as Bi -+ 8, is manifested 
by the R,,-surface becoming increasingly flat along a certain line through the minimum, 
making it difficult to distinguish the correct minimum with finite-precision arithmetic. 
This is because, if et = 13,) D becomes singular and there is a one-dimensional 
subspace of vectors a, satisfying Da, = 0; it then follows that R,(u) = &(a + as) 
so that the minimum can no longer be unique. 

Our term-dropping iteration for solving Eq. (20) proceeds as follows. Suppose the 
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nonlinear step (Section 2(e)) has yielded a new 0 which, for simplicity, is placed in the 
(M + 1)st position. The old coefficient vector, 

UOld = (up )...) qjd, O), (21) 

is augmented by a zero in the (M + 1)st position to reflect this new term. The first M 
components of aold are all positive on account of the successful completion of the 
prior term-dropping iteration (cf. Fig. 2). Suppose the new coefficient vector produced 
by Step II, 

anew = (a,“““,..., u&g, 

has at least one negative entry (which will not be agT1 because of the way 6,+, was 
selected). As we move from aold towards anew along the straight line 

we will cross one coordinate hyperplane for each negative entry in anew. We stop 
when we encounter the first such hyperplane, ak = 0, where k is the value of i at which 
the minimum is assumed in 

Then we reset the “old” coefficient vector to 

aold = (1 - j&J aid + firanew (22) 

which will contain all positive entries except for &” = 0. Because we moved toward 
the minimum of the %-surface in going from the initial coefficients (Eq. (21)) toward 
the improved ones (Eq. (22)), the improved coefficients give a smaller value of R, 
even though a term has effectively been dropped from the fit. 

One now returns to Step II, resolves the linear problem for anew with the constraint 
uFw = 0 (i.e., with the kth column dropped from the matrix A) and repeats the 
procedure of the last paragraph if a new contains any negative entries. One can view 
this process as restricting the search for the minimum to the intersection of the 
R,-surface with the hyperplane a - k - 0. Once the search is so restricted, it is not 
allowed to become unrestricted again; that is, the tih term is not allowed to be 
unzeroed. The path downhill on the R,-surface is thus a zigzag one, dictated by 
encounters with coordinate hyperplanes a, = 0 to which one “sticks” and from which 
one may not become “unstuck.” Each zig (or zag) corresponds to a dropped term in 
the exponential sum. 

The Kuhn-Tucker conditions [33, p. 2141 guarantee that the correct minimum in 
our quadratic programming problem (Eq. 20) has been found if 

v=Du-da0 
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and if vi is only positive when ai is zero, and vice versa (aeui = 0 for all i). The 
procedure in this section never failed to meet these conditions in many thousands of 
test cases which were checked. However, the guaranteed convergence of our expo- 
nential fitting method does not depend on whether or not the Kuhn-Tucker conditions 
are satisfied; all that matters is that R, decreases on each pass through Step III. 

(h) Convergence (IV). Suppose E, is the best fit, and subscript j refers to the jth 
major iteration in Fig. 2. The value of the jth-step residual polynomial at the new 8, 
P,(Q, furnishes the following lower bound on the decrease in the residual in one 
step (C/E Theorem 3.2): 

Clearly P&J + 0 as j -+ co since otherwise the residual would eventually become 
negative. / Pi(SJ also bounds the departure of the jth residual from the best-fit residual 
(C/E Theorem 3.4): 

(In fitting transmission functions, E,(O) = 1 for all practical purposes.) That Ej 
converges to Em , data point by data point, is ensured by (C/E Corollary 3.5) 

These inequalities prove the convergence of our method and demonstrate that the 
residual polynomial is a very sensitive indicator of the rate of that convergence. 

Not only does Ej -+ Em in the least-squares sense, but the actual coefficients ad 
and exponential factors Bi of Ej converge to those of Em . As j + co, the exponential 
factors of Ej cluster in shrinkingly small neighborhoods around those of Em , and the 
sum of the coefficients of Ej in each such neighborhood approaches the corresponding 
coefficient of E, (C/E Theorem 3.7). Extraneous exponential factors may occur in E3 
which are not close to any in Em , but the coefficients of such extraneous terms become 
arbitrarily small as j + cc. In Section 3(a) we shall see examples of extraneous terms 
with small coefficients, which are not entirely eliminated because roundoff error 
precludes the passage to the limit j ---f co. 

After considerable experience with our method, we have developed the set of 
convergence criteria 

(i) (%)I-1 - (%)i < E 
m-1 13 

or 

(3 4(e,) 2 3 , 
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or 

or 
(iii) I 00 - ei I < E3 (i = 1 to M), 

(iv) number of major iterations > Imax. 

The last criterion is merely to guard against computational runaway, and, with 
Z max = 150, is rarely triggered. The method works successfully with c1 = E$ = c3 = 0, 
in which case convergence is achieved only when the residual increases from the 
previous iteration (due to random fluctuation at the level of roundoff error) or when 
the nonlinear step picks a new exponential factor B0 equal to one of the old ones. 
The sample fits presented in Section 3 were generated with c1 = 10-20, z2 = 10-20, 
and l 3 = 1O-6. In general, making the convergence criteria less restrictive does not 
necessarily lead to fewer terms in the fit, since it may prevent pairs of ~9~‘s from 
coming close enough together to be coalesced. 

(i) Coalescence (V). Suppose two exponential factors f& and 8r are close, in a 
sense to be defined below. Then the kth and Zth terms are replaced by a single term 
in order to shorten the fit. Some accuracy may be lost thereby, but this is usually 
quite tolerable. 

If we define the data to be fitted as 

yn = T(u,) - f aitlin (n = O,..., N) 
id 

i#k.l 

then this data is best fitted by akekn + a,@. We choose instead to fit it by a single 
term afP, where a and 8 are chosen to minimize 

(23) 

which leads to the pair of equations 

$(a&/aa) = f(a, e) = 5 w,(aP - y) 8" = 0, 
n==O 

+(abpe) = g(a, e) = f w,(a@ - m) na@-l = 0. 
?a=1 

We solve these equations by a Newton’s method iteration 
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wheref, g, etc., are all evaluated at u = utp) and 19 = W, and where the initial guess 
is 

a(O) = a, + az , 
80) = ge, + (9,). 

The convergence criterion is the first one from the previous section, as applied to the 
residual R, in Eq. (23). No more than six iterations are usually required, even with 
c1 = 10-20, due to the excellence of the initial guess. The final value of 8 almost always 
lies between Bk and 0, , but in rare cases this is not so. 

The procedure of the last paragraph is applied first to the closest pair, then the next 
closest pair, and so forth, until none of the remaining values of 8 are “close.” Any 
term resulting from coalescence should be barred from further coalescence. 

A variety of different closeness criteria have been tried. Those based on the relative 
or absolute differences of 0,‘s all fail because the 0,‘s tend to cluster near 8 = 1. The 
relative difference criteria, if adjusted to cause the correct amount of coalescence near 
8 = 1, do not cause enough near 8 = 0; the absolute criteria, if similarly adjusted, 
cause too much coalescence near 8 = 0. Based on our observation that In ki tends to 
be uniformly distributed once pairs are properly coalesced, the most sophisticated 
procedure would be to establish “major” and “minor” intervals of In ki by search, 
then coalesce all pairs separated only by a “minor” interval. But in practice we have 
been successful with coalescing terms whose values of ki differ by less than 5 to 25 %. 
The larger the value of this percentage, the more coalescence will be done. To illustrate 
this process, we show in Fig. 3 fits to the Goody [34] random band model with a 
line spacing to halfwidth ratio of 20. The 225 transmission data, including values 
from 0.001 to 1, were all rounded to eight decimal places. Each term in the fitted 
exponential sum is represented by a single spike, whose foot is located at the appro- 
priate value of ki and whose height represents a, . Plots are shown for coalescence 

GOODY MODEL, d/a = 20 

0 % 
M = 23 

10-1 

Oi 

IO-’ 

IO-’ 

lb) 25 % 

M = I3 

e,,,=5x10-s.e,,,= wto-” em.,= 7XlO‘s.e,,,= 5x10-7 em,.= 5x10-5. C,.,’ 9x10-7 

em, = 9x 10-0, e; = 0.0006 e;,. = 9*lo-~,e; = 0.06 l :,, = zxlo-~,t; = 0.15 
ki ki ki 

FIG. 3. Spike plots for exponential-sum fits to the Goddy random band model, with a mean 
line spacing (d) to mean halfwidth (a) ratio of 20, and for coalescence criteria of (a) Ox, (b) lo%, 
(4 25 %. 

581/24/4-7 
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criteria of 0, 10, and 25 %. When no coalescence is done, we see a 23-term fit in which 
all but three terms exist closely paired with another term. For the 10 % case, the five 
closest pairs have been eliminated. For the 25 % case, all 10 pairs have been eliminated 
and the spike plot has a much more uniform and pleasing appearance than for the 
0 and 10 % cases. One advantage of these spike plots is that close pairs are easily 
spotted; another is that one can observe how smooth the distribution of ai and ki 
becomes when pairs are eliminated. The smoother plots give a much better feeling 
for the distribution of absorbing power within a spectral interval than do the cluttered 
plots resulting from insufficient coalescence. (Note that the spike envelope appears 
to be double peaked in qualitative agreement with the k-distribution in Arking and 
Grossman’s [3] Fig. 2 for the Goody model.) 

The errors noted beneath each plot in Fig. 3 indicate the penalty one pays for 
coalescence. The quantities emax and erms are the maximum absolute error and r.m.s. 
error in the fit E(U); es,, is the r.m.s. error and ek the average percent error in E’(u), 
excluding the data point U, = 0 at which errors in E’ can be arbitrarily large (see 
Section 2(j)). These quantities are defined formally as 

emax = o(“,a:“N I mJ - Wd IT . . 

f?rms = (l/(N + 1)) f [T(%J - ~(%)I2 1’23 
I n=O I 

&a = (l/N) f [T’(UJ - E’(Un)12 I”, 
I ?l=l I 

eG7 = (loo/N) i I m4 - w4Nl w4Jl. (244 
T&=1 

When no coalescence is done (Fig. 3(a)) the error is never any worse than the rounding 
error (5 x IO-? in the data. This is typical when fitting to infinitely differentiable 
analytic functions such as band models. In going to a 10% coalescence criterion 
(Fig. 3(b)) both ema and erms increase by four orders of magnitude but remain less 
than the error in transmission measurements. The fit error becomes no worse if the 
remaining pairs are coalesced by going up to a 25 % criterion (Fig. 3(c)). This pattern 
is typical, although the details vary widely; the first few coalescences increase the error 
dramatically, but after that there is little penalty for further coalescence. Hence one 
might as well use a liberal criterion like 25 % if one chooses to coalesce at all. 

Coalescence is not as important when fitting real data as when fitting analytic 
functions, for in the former case many fewer terms tend to be produced, and therefore 
there are many fewer close pairs. For analytic functions, rounding the data before 
fitting has generally been found to be a more satisfactory way of reducing the number 
of terms, rather than relying exclusively on coalescence. A combination of rounding 
and coalescence is usually the most effective. 
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These fits have been used by one of the authors [2, 1 l] for ESFT method calculations 
in the earth’s atmosphere for 120- and 340-spectral-interval partitions of the solar and 
infrared spectrums. Thus the fitting method described above has been exercised for 
the widest variety of transmission functions, and has performed without failure in all 
cases. The fits to LOWTRAN transmission functions generally contain from three to 
eight terms and are accurate to better than 0.1 % at all data points, with 0.01 to 
0.001 % being the typical error. 

Generally the number of terms in the fit, the relative sizes of the ai , and the range 
and distribution of the ki are not much affected by the particular manner in which the 
transmission data is selected, for a fixed range of absorber amount. This indicates 
that the ai and ki are not merely numerical artifacts but contain legitimate information 
about the structure of the underlying absorption band. Our method may, as a conse- 
quence, have some utility in analyzing measured transmission data. 

Based on considerations of L/H, and on the fact that transmission measurements 
tend to have a uniform absolute error, we have used weights w, = 1 in fitting 
transmission functions. Other selections could be made to emphasize one part or 
another of the transmission curve. 

3. EXAMPLES 

There are very few published fits to which we can compare our method. Those of 
Sargent [6] and of Raschke and Stucke [20] are of roughly 1% accuracy; we never 
see such large errors in our method. Lacis and Hansen [4] give an eight-term fit to 
Yamamoto’s H,O solar absorption data; since their method and their accuracy are 
about the best one can find in the literature, we have singled out their fit for special 
attention below. We also examine the problems of fitting to data actually sampled 
from an exponential sum and of fitting by the inverse Laplace transform technique 
with Laguerre quadrature. 

In order to examine the effect of random errors in the data on the fits, we have 
chosen simply to round the data after varying numbers of decimal places. (The 
notation nD will hereinafter mean rounded to n decimal places,) The advantage of 
rounding is that it preserves monotonicity (T(u,,) > ... > T(+)) and it simulates the 
laboratory situation. Actual transmission measurements are presently of accuracy 
2D to 3D, but hopefully better measurements will be forthcoming in the future. 

(a) Three-term exponential sum. Great difficulty is experienced by all previously 
published methods in reconstructing an exponential sum, given data sampled from 
that sum (cf. [16, 301). This problem is important, for example, in attempting to 
recover chemical rate constants or radioactive decay rates, as well as the number of 
species involved, from laboratory measurements. We demonstrate the excellent ability 
of our method to recover such a sum, even when the data are only accurate to 2D. 

The sum we have selected simulates transmission data from a more strongly 



EXPONENTIAL-SUM FITTING 437 

absorbing spectral interval. The ki range over two orders of magnitude, and the most 
rapidly decaying component has a substantial coefficient so that the curve is under- 
sampled for small u. The sum is 

T&u) = 0. le-O.OIU + 0.3e-O-l” + 0.6e-“. 

We fit 100 data points {T&U); 12 = 0, I,..., 99) = 1 .O, 0.59 ,..., 0.04. Table I shows 
the number of significant digits to which our method recovers each ai and ki , as a 
function of the number of decimal digits (5D,..., 2D) to which the data is rounded. 

TABLE I 

Number of Significant Digits to Which Coefficients ui and Exponents ki (i = 1, 2, 3) in T&II) are 
Recovered When the 100 Data Values are Rounded to 5D, 4D, 3D, and 2D. Also Corresponding 

Errors between Fit and Data, and Coefficients of Any Spurious Terms in the Fit 

5D 4D 3D 2D 

do. 1) 4 3 2 1 
kl(O.O1) 4 3 3 1 

G(0.3) 5 5 3 2 
W.1) 5 3 2 2 

40.6) 4 3 2 2 
Ml J-8 4 4 2 2 

emax 5 x 10-B 5 x 10-b 5 x 10-a 5 x 10-a 
erms 3 x lo-’ 3 x 10-p 3 x 10-s 3 x IO-4 
eims 6 x lo-” 6 x 1O-8 9 x 10-G 1 x 10-s 
I e% 0.004 0.02 0.2 1.2 

aspuriou8 2 x 10-b 4 x 10-d 0.002 
2 x 10-S 2 x 10-a 3 x 10-a 0.008 

It is seen that our method recovers the ai and ki of the exl)onential sum to roughly 
n significant digits when the data are rounded to nD. Furthermore it finds the number 
of terms correctly, save for additional “spurious” terms (cf. Section 2(h)) with 
identifiably small coefficients as shown (normally the spurious terms impact only the 
last correct digit of the rounded data). 

Note that this example is constructed so that no component falls below the level 
of rounding accuracy at all data points. If one of them did, it would of course be 
completely unrecoverable. This is an ever present caveat on the separation of 
exponentials; that is, there may always be unrecoverable terms with values down in 
the “noise” level. Their coefficients will almost always be less than T(u,), which 
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argues for as large a data range as possible; but nothing can be said about their 
exponents. A larger data range can furthermore compensate for lack of accuracy 
in the data; there is always a trade-off between these two factors in recovering 
exponential components. 

The fitting errors emax, erms , and e& noted in Table I (cf. Section 2(i)) all increase 
by an order of magnitude each time a digit is rounded from the data, and in fact emax 
is precisely the maximum rounding error at each step. erms is about an order of 
magnitude smaller than emax . These relationships are so general that emax (or erms) 
would be an excellent indicator of the accuracy of the data if that were not known 
a priori. 

A final point concerning emax and erms is that they are based on differences between 
the fit and the rounded data. Tf residuals are computed from the exact data, emax 
and erms fall by factors of 2 to 10, indicating that our method senses the smoothness 
of the underlying function and fits to it more than to the “rougher” function corre- 
sponding to the rounded data. This property has been found in all of our fitting 
experiments involving smooth underlying functions. 

(b) Yamamoto’s H,O solar absorption. Lacis and Hansen [4] give the empirical 
fit to Yamamoto’s solar-spectrum water vapor transmission data 

2.9~ 
Ty(U) = ’ - (1 + 141.5~)O.~~~ + 5.925~ 

where u is water vapor amount in precipitable centimeters. They then fit this curve 
with an eight-term exponential sum (their Table 1) good to within 0.1% for 0.01 < 
u < 10, using an NLLS method. 

In Fig. 4 are plotted the fits generated by our method for Tr(u) for 225 data points 

YAMAMOTO SOLAR ABSORPTION 
100 

ai 

10-z 

IO“ 

IO-’ 10-1 100 IO’ 102 103 lo-’ 10-t 100 IO’ IO’ IO’ 10-z 10“ IO0 IO’ IO’ IO’ 

•,..=4x10-~,c,.,= 7x10-a cm,.=4X10-‘.e,,,= 6X10-’ em..= 2xlo-‘,c,,,. 2x10-6 

c:..: 3xlo-5,c; = 0.02 c:..=7xIo-‘,d~ = 0.11 *,*. = zxlo-?e’~ = 0.62 

ki ki ki 

FIG. 4. Spike plots for exponential-sum fits to Lacis and Hansen’s fit to the Yamamoto solar 
absorption data, for data rounded to (a) 5D, (b) 4D, (c) 3D. For each case a large ki = 0 spike is 
not shown. 
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rounded to 5D, 4D, and 3D and covering the range u,, = 0 to u2= = 10. A k = 0 
spike in each tit could not be included because of the logarithmic scale for ki . 
The various errors, defined in Section 2(i) and given beneath each plot, refer to the 
exact rather than the rounded data. It is plain that rounding is an excellent artifice 
for reducing the number of terms in the fit if one is willing to sacrifice some accuracy. 
It is equivalent to removing a certain amount of differentiability or smoothness from 
the data, and the algorithm responds by fitting fewer terms, just as it does when 
fitting interpolated tabular data from LOWTRAN (cf. Section 2(k)). 

Note that the maximum absolute error in >our eight-term fit (Fig. 4(b)) is 0.004 % 
and the r.m.s. absolute error is 0.00006 %; compare this to the 0.1 y0 error in the 
eight-term fit of Lacis and Hansen. Even our six-term fit (Fig. 4(c)) is significantly 
more accurate than their fit. Clearly the NLLS method of Lacis and Hansen falsely 
claimed to have converged to the best eight-term fit; the authors’ own experiences 
with NLLS methods for exponential fitting are replete with such cases of false conver- 
gence. 

(c) Goody and Malkmus band ntodels. The Goody [34] random band model for 
transmission is 

where 

and S is the mean line strength, d the mean line spacing, and (II the mean line halfwidth. 
In the same notation, the Malkmus [36] random band model is 

TM(C) = exp[-(7rol/U)((l + 4c)1’2 - l)]. 

We examine the behavior of fits for both the Goody and Malkmus models as d/al 
varies. Figure 5 shows spike plots for d/u = 2,20, and 200. (Rodgers and Walshaw 
[37] show d/al ratios varying from 7 to 60 for real infrared absorption bands.) All 
transmission data are rounded to 7D, and have a range 0.001-I. The fits shown in 
Fig. 5 have maximum errors (em=) between low4 and IO-$ while we have derived 
fits of equivalent accuracy with many fewer terms, these particular ones were selected 
because the envelope of the spikes gives a better picture of the underlying k- 
distribution. 

The logarithms of the exponents ki exhibit a remarkably uniform spacing in Fig. 5 
(the same thing can be seen in Fig. 4). Furthermore, each time d/a! increases by an 
order of magnitude the major peak of the spike distribution shifts downward by 
two orders of magnitude, for both models. For d/or = 2 the absorption lines tend to be 
very close together, therefore the windows are filled in, so that large values of ki are 
emphasized. Our method reflects this by selecting a much smaller range of k8 values 
than when d/ar = 20 or 200. The shifting of the group of spikes to smaller values of ki 
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FIG. 5. Spike plots for exponential-sum fits to the Goody and Malkmus random band models, 
with line-spacing-to-balfwidth ratios of (a) and (d), 2; (b) and (e), 20; (c) and (f), 200. 

as d/a increases reflects the increasing “gappiness” of the model spectrum with its 
increasing percentage of small absorption. 

Another point about Fig. 5 is that the corresponding Goody and Malkmus fits 
appear very similar qualitatively, i.e., in the range and distribution of the ki and the 
sizes of the ai . This is not surprising since the two models have the same value and 
slope at u = 0, the same asymptotic form for large U, and do not differ significantly 
for intermediate values of U. But when their spike plots are overlaid, one finds 
systematic shifts of the Malkmus spikes toward smaller values of ki ; in this way the 
fitting method reflects the larger percentage of weak lines in the Malkmus model. 
The larger the value of ki , the more the Malkmus spike is shifted to the left compared 
to the corresponding Goody spike (except when both models have coincident right- 
most spikes corresponding to f&r,). Corresponding Goody and Malkmus spikes have 
remarkably similar heights (values of ai) except for the very right-most and left-most 
ones. Thus the Malkmus fits are very close to the Goody ones except that they are 
compressed toward smaller values of ki . 

(d) Luguerre quadrature of the inverse Laplace transform. Domoto [23].has pointed 



EXPONENTIAL-SUM FITTING 441 

out that the inverse Laplace transform (see the Introduction) of the Malkmus model 
takes the particularly simple form 

fM(k) = g k-3/2 exp (- $ - $, 

where 

Let us use this in a quadratured form of Eq. (2) and compare the exponential fits so 
generated with those from our method. 

The Laguerre quadrature rule is the standard one for integrals like the Laplace 
transform. It may be written 

I Om F(x) e-” dx s f AiF 
i-1 

or 

s 
m G(x) dx z 5 AteziG( 

0 i-1 

Applied to Eq. (2) for the Malkmus model, this leads to 

T,,,(u) = I* fM(k) e8” dk z 5 Aiek’f,(kj) eCksu. 
0 i=l 

(25) 

Values of Ai and k8 (=x3 were obtained using a computer program in Stroud and 
Secrest [38] for a wide variety of values of M. Selected fits generated by Eq. (25) for 
M = 6 and 30 are plotted as dotted lines in Fig. 6 for ratios d/a = 7 and 20 (d/a = 7 
is the smallest value found by Rodgers and Walshaw [37]). TM(u) is plotted for 
comparison in each case. It would have been useless to present our Malkmus model 
fits in this form because they would have been indistinguishable from the exact curve. 
This indicates the vastly poorer accuracy from fitting according to Eq. (25). 

The trends we observe in Fig. 6 are indicative. That is, for a fixed number of terms 
M, the fits continue to improve as d/a decreases below 7 ,and continue to grow worse 
as d/a increases above 20. They also improve as M increases, as we might expect, but 
only up to a point. These Laguerre-quadrature fits behave very much like asymptotic 
series-they are not infinitely improvable by increasing the number of terms. This is 
perhaps even more damning for such fits than their abysmally poor accuracy or their 
frequent prediction of transmission greater than one for small u. 

The bad behavior of Laguerre quadrature in this example is of course related to 
the fact that it is designed to integrate polynomials multiplied by exponentials. The 
behavior off,(k) is decidedly nonpolynomial, especially for k + 0 where it has an 
essential singularity. But if one adapts a quadrature rule specifically to fM(k), one has 
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d/a d/a = 7.0 = 7.0 

lo-’ . 
10-z 10-1 100 10’ 101 10’ 

e,,,.. * 0.24, erml = 0.016 

e; = 41 , e;,, = 9x10-4 

e,,,.. * 0.24, erml = 0.016 

e; = 41 , e;,, = 9x10-. 

IO“ to-1 100 IO’ 102 103 
em,,= 0.16 , e,mr= 0.012 

e; = 29 , e;mr= 3x10-* 

” 

d/a = 20.0 

em.,, = 0.34, e,,, j 0.027 

e;=39 , e;,, = .9xlo-5 

” 

FIG. 6. Plots of the Malkmus random band model transmission TM(U) vs u, compared to ex- 
ponential-sum fits to TM(U) generated by the Laguerre quadrature method and having M = 6 and 
M = 30 terms. The first column is for a line-spacing-to-halfwidth ratio d/a = 7, and the second 
column for d/a = 20. 

entirely lost generality since the behaviors of&(k) as k + 0 and k + co are very 
special. 

A deeper understanding of the whole quadrature-fit question would require results 
from Tauberian theory (cf. [22]) relating the asymptotic behaviors of T(U) and f(k) 
in Eq. (2). For example, the essentially singular behavior offM(k) as k -+ 0 profoundly 
influences the fit accuracy as u -+ co. But it is beyond our scope to enter into such 
questions here; we merely wish to show that Eq. (2) does not yield a useful general 
procedure for exponential-sum fitting in realistic situations. 

4. SUMMARY AND CONCLUSIONS 

We have given a new method for obtaining the best fit, in the least squares sense, 
of a sum of exponentials to arbitrary data, with particular reference to the fitting of 
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transmission functions. The fitted sum consists of purely decaying exponentials with 
positive coefficients. Our method rests on a solid theoretical groundwork of existence, 
uniqueness, and convergence proofs laid by Cantor and Evans [31], and in addition 
to these important features it internally selects the correct number of terms consistent 
with the accuracy of the data and has procedures to sidestep the inherent ill condi- 
tioning of the problem. The fits which we produce are generally orders of magnitude 
more accurate than any which have been published heretofore. 

The focus of this work has been the fitting of transmission functions, because of our 
long-standing interest in the ESFT method (reviewed in the Introduction) for 
performing broad-band radiative flux calculations in a multiple-scattering/line- 
absorbing atmosphere. Example fits were given and discussed for the Goody and 
Malkmus random band model and the Yamamoto H,O solar absorption data. 
We looked particularly at the effect of rounding the data (corresponding to mea- 
surement errors) on both the accuracy and number of terms in the fit; based on these 
studies, we pointed out the potential utility of our method in analyzing measured 
transmission data. Finally, we made some preliminary studies of the inverse Laplace 
transform method of generating exponential fits, and for the Malkmus model case 
with Laguerre quadrature found this approach to be totally unsatisfactory. 

But exponential fitting has much broader application than to ESFT problems, 
for example to the identification of multiple radioactive species and to the analysis 
of human lung exhalations and chemical rate constants. This is because many physical 
processes are formulated mathematically as systems of linear differential equations 
with constant coefficients. Such systems have sums of exponentials for solutions, 
except in certain special cases, and therefore one may, with our method, work 
backward from the solutions to the constant coefficients (which are often rate constants 
of some sort). We have therefore given an example of the success of our method in 
analyzing data actually sampled from an exponential sum and rounded to as few as 
two decimal digits, which relates to these other sorts of applications. 

A computer code implementing our exponential-sum fitting method is available 
from the authors on request. 

ACKNOWLEDGMENTS 

The authors wish to thank Professor C.D. Rodgers for helpful discussions on band models. We 
also acknowledge the support of the ARPA Climate Dynamics Program during part of this work 
and of NCAR and particularly, Dr. Stephen Schneider during the remainder. 

REFERENCES 

1. G. HUNT AND I. GRANT, J. Atmospheric Sci. 26 (1969), 963. 
2. W. J. WJSCOMBE AND B. E. FREEMAN, Preprint volume, First Conference on Atmospheric Ra- 

diation, Ft. Collins, Colo., American Meteorology Society, Boston, Mass., 1972. 
3. A. ARKING AND K. GROSSMAN, J. Atmospheric Sci. 29 (1972), 937. 



444 WISCOMBE AND EVANS 

4. A. LACIS AND J. E. HANSEN, J. Atmospheric Sci. 31 (1974), 118. 
5. E. RASZHKE, M. KERSCHGENS, U. PILZ, AND U. REUTER, Abstract Volume, Second Conference 

on Atmos. Radiation, Arlington, Va., American Meteorology Society, Boston, Mass., 1975. 
6. S. SARGENT, “A Numerical Solution to the Transfer Equations for Infrared Radiation in a 

Non-Gray, Absorbing, Emitting, and Scattering Atmosphere,” Ph.D. Thesis, Univ. of Wisconsin, 
1971. 

7. S. SARGENT AND W. BECKMAN, J. Atmospheric Sci. 30 (1973), 88. 
8. K. LIOU AND T. SASAMORI, J. Atmospheric Sci. 32 (1975), 2166. 
9. J. POLLACK, 0. TOON, A. SUMMERS, W. VAN CAMP, AND B. BALDWIN, J. Appl. Meteorol. 15 

(1976), 247. 
10. G. YAMAMOTO, M. TANAKA, AND S. ASANO, J. Quant. Spectrosc. Radiat. Transfer 11 (1971), 697. 
11. W. J. WISCOMBE, Solar radiation calculations for arctic summer stratus conditions, in “Climate 

of the Arctic” (G. Weller and S. Bowling, Eds.), Geophysical Institute, Univ. of Alaska Press, 
Fairbanks, Alaska, 1973. 

12. S. CHANDRASEKHAR, Mon. Notic. Roy. Astron. Sot. 96 (1935), 21. 
13. W. MACADAMS, “Heat Transmission,” pp. 11 l-l 12, McGraw-Hill, New York, 1954. 
14. G. BOND AND C. SIEWERT, J. Quant. Spectrosc. Radiat. Transfer 10 (1970), 865. 
15. K. YA. KONDRAT’YEV, “Radiation in the Atmosphere,” Academic Press, New York, 1969. 
16. C. LANCZOS, “Applied Analysis,” Prentice-Hall, Englewood Cliffs, N.J., 1956. 
17. E. AVRETT AND D. HUMMER, Mon. Notic. Roy. Astron. Sot. 130 (1965), 295. 
18. F. HILDEBRAND, “Introduction to Numerical Analysis,” McGraw-Hill, New York, 1956. 
19. G. HUDSON, Amer. J. Phys. 21 (1953), 362. 
20. E. RASCHKE AND U. STUCKE, Beitr. Physik Atmas. 46 (1973), 203. 
21. M. OSBORNE, SIAM J. Numer. Anal. 12 (1975), 571. 
22. R. BELLMAN, R. KALABA, AND J. LOCKETT, “The Numerical Inversion of the Laplace Transform,” 

American Elsevier, New York, 1966. 
23. G. DOMOTO, J. Quant. Spectrosc. Radiat. Transfer 14 (1974), 935. 
24. D. GARDNER, J. GARDNER, G. LAUSH, AND W. MEINKE, J. Chem. Phys. 31 (1959), 978. 
25. D. GARDNER, Ann. N.Y. Acad. Sci. 108 (1963), 195. 
26. G. BROWNELL AND A. CALLAHAN, Ann. N. Y. Acad. Sci. 108 (1963), 172. 
27. A. PAPOULIS, SIAM J. Control 11 (1973), 466. 
28. G. WESTLEY AND J. WATTS, Eds., “The Computing Technology Center Numerical Analysis 

Library,” Oak Ridge National Lab, Report CTC-39, Oak Ridge, Tenn., 1970. 
29. J. LANG AND R. MUELLER, Comput. Phys. Commun. 2 (1971), 79. 
30. M. Box, Comput. J. 9 (1966), 67. 
31. D. G. CANTOR AND J. W. EVANS, SIAM J. Appl. Math. 18 (1970), 380. 
32. C. LAWSON AND R. HANSON, “Solving Least Squares Problems,” Prentice-Hall, Englewood 

Cliffs, N.J., 1974. 
33. G. HADLEY, “Non-Linear and Dynamic Programming,” Addison-Wesley, Reading, Mass., 

1964. 
34. R. GOODY, Quart. J. Roy. Meteorol. Sot. 78 (1952), 165. 
35. J. E. A. SELBY AND R. MCCLATCHEY, “Atmospheric Transmittance from 0.25 to 28.5 pm: 

Computer Code LOWTRAN 2,” Air Force Cambridge Research Labs, Report AFCRL-72-0745, 
Bedford, Mass., 1972. 

36. W. MALKMUS, J. Opt. Sot. Amer. 57 (1967), 323. 
37. C. D. RODGERS AND C. D. WALSHAW, Quart. J. Roy. Meteorol. Sot. 92 (1966), 67. 
38. A. STROUD AND D. SECREST, “Gaussian Quadrature Formulas,” Prentice-Hall, Englewood 

Cliffs, N. J., 1966. 


